About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Computational Chemistry
Paper
Protein calculations on parallel processors. I. Parallel algorithm for the potential energy
Abstract
We investigate and test an algorithm suitable for the parallel calculation of the potential energy of a protein, or its spatial gradient, when the protein atoms interact via pair potentials. This algorithm is similar to one previously proposed, but it is more efficient, having half the interprocessor communications costs. For a given protein, we show that there is an optimal number of processors that gives a maximum speedup of the potential energy calculation compared to a sequential machine. (Using more than the optimum number of processors actually increases the computation time). With the optimum number the computation time is proportional to the protein size N. This is a considerable improvement in performance compared to sequential machines, where the computation time is proportional to N2. We also show that the dependence of the maximum speedup on the message latency time is relatively weak. Copyright © 1992 John Wiley & Sons, Inc.