About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays (invited)
Abstract
The low temperature magnetic properties of arrays of scanning tunneling microscope (STM) fabricated ferromagnetic particles have been studied as a function of their dimension using a novel high sensitivity Hall magnetometer. Iron deposits with controlled shape and nanometer scale diameters (∼25 nm) are formed using a STM to decompose a metalorganic precursor [Fe(CO) 5] in the active area of the measurement device. The hysteresis loops change significantly in going from nearly isotropic to oriented high aspect ratio (6:1 length to diameter) filamentary particles. In particles of intermediate aspect ratio and diameter the largest coercive field of 2.7 kOe is observed. This behavior as well as the characteristics of the Hall magnetometer (spin sensitivity of 10-14 emu/ Hz1/2) are described.