About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Abstract
A (directed) network of people connected by ratings or trust scores, and a model for propagating those trust scores, is a fundamental building block in many of today's most successful e-commerce and recommendation systems. We develop a framework of trust propagation schemes, each of which may be appropriate in certain circumstances, and evaluate the schemes on a large trust network consisting of 800K trust scores expressed among 130K people. We show that a small number of expressed trusts/distrust per individual allows us to predict trust between any two people in the system with high accuracy. Our work appears to be the first to incorporate distrust in a computational trust propagation setting.