About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
DSN-W 2016
Conference paper
Profiling Memory Vulnerability of Big-Data Applications
Abstract
Motivated by the increasing popularity of hosting in-memory big-data analytics in cloud, we present a profiling methodology that can understand how different memory subsystems, i.e., cache and memory bandwidth, are susceptible to the impact of interference from co-located applications. We first describe the design of the proposed tool and demonstrate a case study consisting of five Spark applications on real-life data set.