About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Access
Paper
Privacy-Preserving Energy Scheduling for Smart Grid with Renewables
Abstract
We consider joint demand response and power procurement to optimize the average social welfare of a smart power grid system with renewable sources. The renewable sources such as wind and solar energy are intermittent and fluctuate rapidly. As a consequence, the demand response algorithm needs to be executed in real time to ensure the stability of a smart grid system with renewable sources. We develop a demand response algorithm that converges to the optimal solution with superlinear rates of convergence. In the simulation studies, the proposed algorithm converges roughly thirty time faster than the traditional subgradient algorithm. In addition, it is fully distributed and can be realized either synchronously or in asynchronous manner, which eases practical deployment.