About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2020
Workshop paper
Predictive Model Selection for Transfer Learning in Sequence Labeling Tasks
Abstract
Transfer learning is a popular technique to learn a task using less training data and fewer compute resources. However, selecting the correct source model for transfer learning is a challenging task. We demonstrate a novel predictive method that determines which existing source model would minimize error for transfer learning to a given target. This technique does not require learning for prediction, and avoids computational costs of trail-and-error. We have evaluated this technique on nine datasets across diverse domains, including newswire, user forums, air flight booking, cybersecurity news, etc. We show that it per-forms better than existing techniques such as fine-tuning over vanilla BERT, or curriculum learning over the largest dataset on top of BERT, resulting in average F1 score gains in excess of 3%. Moreover, our technique consistently selects the best model using fewer tries.