Publication
UMAP 2016
Conference paper

Predicting customer satisfaction in customer support conversations in social media using affective features

View publication

Abstract

Providing customer support through social media channels is gaining popularity. In such a context, predicting customer satisfaction in an early stage of a service conversation is important. Such an analysis can help personalize agent assignment to maximize customer satisfaction, and prioritize conversations. In this paper, we show that affective features such as customer's and agent's personality traits and emotion expression improve prediction of customer satisfaction when added to more typical text based features. We only utilize information extracted from the first customer conversation turn and previous customer and agent social network activity. Thus, our customer satisfaction classifier outputs its prediction in an early stage of the conversation, before any interaction has taken place between the customer and an agent. Our model was trained and tested on a Twitter conversations dataset of two customer support services, and shows an improvement of 30% in F1-score for predicting dissatisfaction.

Date

13 Jul 2016

Publication

UMAP 2016

Authors

Share