About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IUI 2016
Conference paper
Predicting attitude and actions of twitter users
Abstract
In this paper, we present computational models to predict Twitter users' attitude towards a specific brand through their personal and social characteristics. We also predict their likelihood of taking different actions based on their attitudes. In order to operationalize our research on users' attitude and actions, we collected ground-truth data through surveys of Twitter users. We have conducted experiments using two real world datasets to validate the effectiveness of our attitude and action prediction framework. Finally, we show how our models can be integrated with a visual analytics system for customer intervention.