About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
CNSM 2015
Conference paper
PRACTISE: Robust prediction of data center time series
Abstract
We analyze workload traces from production data centers and focus on their VM usage patterns of CPU, memory, disk, and network bandwidth. Burstiness is a clear characteristic of many of these time series: there exist peak loads within clear periodic patterns but also within patterns that do not have clear periodicity. We present PRACTISE, a neural network based framework that can efficiently and accurately predict future loads, peak loads, and their timing. Extensive experimentation using traces from IBM data centers illustrates PRACTISE's superiority when compared to ARIMA and baseline neural network models, with average prediction errors that are significantly smaller. Its robustness is also illustrated with respect to the prediction window that can be short-term (i.e., hours) or long-term (i.e., a week).