About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Annals of Statistics
Paper
Piecewise linear regularized solution paths
Abstract
We consider the generic regularized optimization problem β̂(λ) = arg minβ L(y, Xβ) + λJ(β). Efron, Hastie, Johnstone and Tibshirani [Ann. Statist. 32 (2004) 407-499] have shown that for the LASSO - that is, if L is squared error loss and J(β) = ||β||l is the ℓl norm of β - the optimal coefficient path is piecewise linear, that is, ∂β(λ)/∂λ is piecewise constant. We derive a general characterization of the properties of (loss L, penalty J) pairs which give piecewise linear coefficient paths. Such pairs allow for efficient generation of the full regularized coefficient paths. We investigate the nature of efficient path following algorithms which arise. We use our results to suggest robust versions of the LASSO for regression and classification, and to develop new, efficient algorithms for existing problems in the literature, including Mammen and van de Geer's locally adaptive regression splines. © Institute of Mathematical Statistics, 2007.