About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Frontiers in Nanotechnology
Paper
Physical modeling of HZO-based ferroelectric field-effect transistors with a WO x channel
Abstract
The quasistatic and transient transfer characteristics of Hf0.57Zr0.43O2 (HZO)-based ferroelectric field-effect transistors (FeFETs) with a WOx channel are investigated using a 2-D time-dependent Ginzburg-Landau model as implemented in a state-of-the-art technology computer aided design tool. Starting from an existing FeFET configuration, the influence of different design parameters and geometries is analyzed before providing guidelines for next-generation devices with an increased “high (RH) to low (RL)” resistance ratio, i.e., RH/RL. The suitability of FeFETs as solid-state synapses in memristive crossbar arrays depends on this parameter. Simulations predict that a 13 times larger RH/RL ratio can be achieved in a double-gate FeFET, as compared to a back-gated one with the same channel geometry and ferroelectric layer. The observed improvement can be attributed to the enhanced electrostatic control over the semiconducting channel thanks to the addition of a second gate. A similar effect is obtained by thinning either the HZO dielectric or the WOx channel. These findings could pave the way for FeFETs with enhanced synaptic-like properties that play a key role in future neuromorphic computing applications.