About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Photoluminescence in a disordered insulator: The trapped-exciton model
Abstract
A simple phenomenological model of the electronic structure of the pseudogap of an amorphous semiconductor is considered, and used as the starting point for a systematic investigation of the processes that determine the nature of the photoluminescence. Many of the most striking features of these materials are shown to derive in a straightforward manner from the nature of the primary luminescing entity, a "trapped exciton" in which the hole is trapped in a localized gap state and the electron is bound to the hole by their mutual Coulomb attraction. Other important properties of the photoluminescence reflect the dynamics of the hopping motion of a charged carrier through a band of localized states. © 1982 The American Physical Society.