Publication
Physical Review B
Paper

Phase-sensitive optical detection of ballistic phonon heat pulses using frequency-modulation spectroscopy and persistent spectral holes

View publication

Abstract

With the use of laser frequency-modulation (FM) spectroscopy and persistent spectral holes, time-resolved phase-sensitive probing of ballistic phonon heat pulses is accomplished in the interior of a NaF crystal. The ballistic phonon heat pulses are generated by the absorption of a Nd:YAG (neodymium-doped yttrium aluminum garnet) laser pulse in a Cr film on the sample surface. Local measurement of the propagating stress-strain field is illustrated by detecting the modulation of a spectral hole in the inhomogeneously broadened 607-nm color-center absorption in x-irradiated NaF at liquid-helium temperatures. By examining the dependence of the observed phonon time-of-flight data on the polarization of the probing light, the position within the sample, and the phase of FM detection, an identification of the acoustic polarizations of the propagating phonons may be made. The effects of phonon focusing and mode conversion upon reflection must be taken into account to complete the identification. Along with the ability to determine the sign of the acoustic disturbance, this experiment features a strain detection limit of 4×10-9 at a time resolution of 50 ns. © 1991 The American Physical Society.

Date

Publication

Physical Review B

Authors

Topics

Share