About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2015
Conference paper
Persistent topology of decision boundaries
Abstract
Topological signal processing, especially persistent homology, is a growing field of study for analyzing sets of data points that has been heretofore applied to unlabeled data. In this work, we consider the case of labeled data and examine the topology of the decision boundary separating different labeled classes. Specifically, we propose a novel approach to construct simplicial complexes of decision boundaries, which can be used to understand their topology. Furthermore, we illustrate one use case for this line of theoretical work in kernel selection for supervised classification problems.