Publication
NAACL-HLT 2009
Conference paper

Performance prediction for exponential language models

View publication

Abstract

We investigate the task of performance prediction for language models belonging to the exponential family. First, we attempt to empirically discover a formula for predicting test set cross-entropy for n-gram language models. We build models over varying domains, data set sizes, and n-gram orders, and perform linear regression to see whether we can model test set performance as a simple function of training set performance and various model statistics. Remarkably, we find a simple relationship that predicts test set performance with a correlation of 0.9997. We analyze why this relationship holds and show that it holds for other exponential language models as well, including class-based models and minimum discrimination information models. Finally, we discuss how this relationship can be applied to improve language model performance. © 2009 Association for Computational Linguistics.

Date

Publication

NAACL-HLT 2009

Authors

Share