Publication
KDD 2019
Conference paper

Perdrep: Personalized drug effectiveness prediction from longitudinal observational data

View publication

Abstract

In contrast to the one-size-fits-all approach to medicine, precision medicine will allow targeted prescriptions based on the specific profile of the patient thereby avoiding adverse reactions and ineffective but expensive treatments. Longitudinal observational data such as Electronic Health Records (EHRs) have become an emerging data source for personalized medicine. In this paper, we propose a unified computational framework, called PerDREP, to predict the unique response patterns of each individual patient from EHR data. PerDREP models individual responses of each patient to the drug exposure by introducing a linear system to account for patients' heterogeneity, and incorporates a patient similarity graph as a network regularization. We formulate PerDREP as a convex optimization problem and develop an iterative gradient descent method to solve it. In the experiments, we identify the effect of drugs on Glycated hemoglobin test results. The experimental results provide evidence that the proposed method is not only more accurate than state-of-the-art methods, but is also able to automatically cluster patients into multiple coherent groups, thus paving the way for personalized medicine.

Date

Publication

KDD 2019

Authors

Share