About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
KDD 2019
Conference paper
Perdrep: Personalized drug effectiveness prediction from longitudinal observational data
Abstract
In contrast to the one-size-fits-all approach to medicine, precision medicine will allow targeted prescriptions based on the specific profile of the patient thereby avoiding adverse reactions and ineffective but expensive treatments. Longitudinal observational data such as Electronic Health Records (EHRs) have become an emerging data source for personalized medicine. In this paper, we propose a unified computational framework, called PerDREP, to predict the unique response patterns of each individual patient from EHR data. PerDREP models individual responses of each patient to the drug exposure by introducing a linear system to account for patients' heterogeneity, and incorporates a patient similarity graph as a network regularization. We formulate PerDREP as a convex optimization problem and develop an iterative gradient descent method to solve it. In the experiments, we identify the effect of drugs on Glycated hemoglobin test results. The experimental results provide evidence that the proposed method is not only more accurate than state-of-the-art methods, but is also able to automatically cluster patients into multiple coherent groups, thus paving the way for personalized medicine.