About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
WACV 2016
Conference paper
People detection in crowded scenes by context-driven label propagation
Abstract
Exploiting contextual cues has been a key idea to improve people detection in crowded scenes. Along this line we present a novel context-driven approach to detect people in crowded scenes. Based on a context graph that incorporates both geometric and social contextual patterns in crowds, we apply label propagation to discover weak detections contextually compatible with true detections while suppressing irrelevant false alarms. Compared to previous approaches for context modeling limited to only pairwise spatial interactions between local object neighbors, our approach provides a more effective way to model people interactions in a global context. Our approach achieves performance comparable to state of the art on two challenging datasets for people and pedestrian detection.