About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Science
Paper
Patterned delivery of immunoglobulins to surfaces using microfluidic networks
Abstract
Microfluidic networks (μFNs) were used to pattern biomolecules with high resolution on a variety of substrates (gold, glass, or polystyrene). Elastomeric μFNs localized chemical reactions between the biomolecules and the surface, requiring only microliters of reagent to cover square millimeter-sized areas. The networks were designed to ensure stability and filling of the μFN and allowed a homogeneous distribution and robust attachment of material to the substrate along the conduits in the μFN. Immunoglobulins patterned on substrates by means of μFNs remained strictly confined to areas enclosed by the network with submicron resolution and were viable for subsequent use in assays. The approach is simple and general enough to suggest a practical way to incorporate biological material on technological substrates.