About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review A - AMO
Paper
Parity bit in quantum cryptography
Abstract
An n-bit string is encoded as a sequence of nonorthogonal quantum states. The parity bit of that n-bit string is described by one of two density matrices, [Formula Presented] and [Formula Presented], both in a Hilbert space of dimension [Formula Presented]. In order to derive the parity bit the receiver must distinguish between the two density matrices, e.g., in terms of optimal mutual information. In this paper we find the measurement which provides the optimal mutual information about the parity bit and calculate that information. We prove that this information decreases exponentially with the length of the string in the case where the single bit states are almost fully overlapping. We believe this result will be useful in proving the ultimate security of quantum cryptography in the presence of noise. © 1996 The American Physical Society.