Advanced Healthcare Materials

Ovarian Cancer Immunotherapy Using PD-L1 siRNA Targeted Delivery from Folic Acid-Functionalized Polyethylenimine: Strategies to Enhance T Cell Killing

View publication


Adoptive T cell immunotherapy is a promising treatment strategy for epithelial ovarian cancer (EOC). However, programmed death ligand-1 (PD-L1), highly expressed on EOC cells, interacts with programmed death-1 (PD-1), expressed on T cells, causing immunosuppression. This study aims to block PD-1/PD-L1 interactions by delivering PD-L1 siRNA, using various folic acid (FA)-functionalized polyethylenimine (PEI) polymers, to SKOV-3-Luc EOC cells, and investigate the sensitization of the EOC cells to T cell killing. To enhance siRNA uptake into EOC cells, which over express folate receptors, PEI is modified with FA or PEG-FA so that siRNA is complexed into nanoparticles with folate molecules on the surface. PEI modification with a single functional group lowers the polymer cytotoxicity compared to unmodified PEI. FA-conjugated polymers increase siRNA uptake into SKOV-3-luc cells and decrease unspecific uptake into monocytes. All polymers result in 40% to 50% PD-L1 protein knockdown. Importantly, SKOV-3-Luc cells treated with either PEI-FA or PEI- polyethylene glycol (PEG)-FA/PD-L1 siRNA complexes are up to twofold more sensitive to T cell killing compared to scrambled siRNA treated controls. These findings are the first to demonstrate that PD-L1 knockdown in EOC cells, via siRNA/FA-targeted delivery, are able to sensitize cancer cells to T cell killing.