About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICML 2005
Conference paper
Optimizing abstaining classifiers using ROC analysis
Abstract
Classifiers that refrain from classification in certain cases can significantly reduce the misclassification cost. However, the parameters for such abstaining classifiers are often set in a rather ad-hoc manner. We propose a method to optimally build a specific type of abstaining binary classifiers using ROC analysis. These classifiers are built based on optimization criteria in the following three models: cost-based, bounded-abstention and bounded-improvement. We demonstrate the usage and applications of these models to effectively reduce misclassification cost in real classification systems. The method has been validated with a ROC building algorithm and cross-validation on 15 UCI KDD datasets.