About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Paper
Optimal test margin computation for at-speed structural test
Abstract
In the face of increased process variations, at-speed manufacturing test is necessary to detect subtle delay defects. This procedure necessarily tests chips at a slightly higher speed than the target frequency required in the field. The additional performance required on the tester is called test margin. There are many good reasons for margin, including voltage and temperature requirements, incomplete test coverage, aging effects, coupling effects, and accounting for modeling inaccuracies. By taking advantage of statistical timing, this paper proposes an optimal method of test margin determination to maximize yield while staying within a prescribed shipped product quality loss limit. If process information is available from the wafer testing of scribe-line structures or on-chip process monitoring circuitry, this information can be leveraged to determine a per-chip test margin which can further improve yield. © 2009 IEEE.