About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
SIGMETRICS/IFIP 2016
Conference paper
Optimal Heavy-Traffic Queue Length Scaling in an Incompletely Saturated Switch
Abstract
We consider an input queued switch operating under the MaxWeight scheduling algorithm. This system is interesting to study because it is a model for Internet routers and data center networks. Recently, it was shown that theMaxWeight algorithm has optimal heavy-traffic queue length scaling when all ports are uniformly saturated. Here we consider the case where a fraction of the ports are saturated and others are not (which we call the incompletely saturated case), and also the case where the rates at which the ports are saturated can be different. We use a recently developed drift technique to show that the heavy-traffic queue length under the MaxWeight scheduling algorithm has optimal scaling with respect to the switch size even in these cases.