Publication
Journal of Electronic Materials
Paper

Optical properties of photochromatic sulfur-doped chlorosodalite

View publication

Abstract

Synthetic.photochromic sulfo-chlorosodalite, 6(NaAlSiO4) ·2 NaCl(S), has been thoroughly investigated by measurements of optical absorption, photo-luminescence and cathodoluminescence. Depending on the sulfur ion form and concentration, the doped sodalite exhibits either sensitive tene-brescence or photoluminescence with long wavelength UV excitation. The photo-induced color absorption peaks at 5260A at 300°K with absorption coefficient, Δαmax >200 cm-1 . This is by far the highest photo-induced absorption observed for synthetic chlorosodalite. At 80°K, the peak position of the absorption does not show significant shift within instrumental accuracy. In photoluminescence, the emission spectra as well as the excitation spectra are studied at both 300 and 78°K. Four characteristic spectral bands (IR, blue, red, and a band with oscillation in wavelength) are observed. The oscillatory S2 - ion emission band starting about 2.35 eV and extending to lower energy and the IR band peaked at 1.4 eV are most efficiently excited by 3660A (3.4 eV), whereas the blue luminescence peaked at 2.7 eV has an excitation threshold of 3.9 eV. The red band is often masked by the oscillatory band and can be observed by higher energy excitation. The red and blue bands are also observable in the cathodoluminescence measurements of the sulfur-doped samples but not the undoped samples. Correlating the absorption, luminescence, and excitation spectral results, a quantitative model is derived to interpret the nature and the role of sulfur ions in the photochromic chlorosodalite material. © 1973 American Institute of Mining, Metallurgical, and Petroleum Engineers. Inc.

Date

01 Feb 1973

Publication

Journal of Electronic Materials

Authors

Topics

Share