About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Graphs and Combinatorics
Paper
Opposite-quadrant depth in the plane
Abstract
Given a set S of n points in the plane, the opposite-quadrant depth of a point p S is defined as the largest number k such that there are two opposite axis-aligned closed quadrants (NW and SE, or SW and NE) with apex p, each quadrant containing at least k elements of S. We prove that S has a point with opposite-quadrant depth at least n/8. If the elements of S are in convex position, then we can guarantee the existence of an element whose opposite-quadrant depth is at least n/4. Both results are asymptotically best possible. © Springer-Verlag Tokyo 2007.