About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Low Temperature Physics
Paper
On the proximity effect in a superconductive slab bordered by metal
Abstract
The first Ginzburg-Landau equation for the order parameter ψ in the absence of magnetic fields is solved analytically for a superconducting slab of thickness 2d bordered by semi-infinite regions of normal metal at each face. The real-valued normalized wave function f=ψ/ψ∞ depends only on the transversal spatial coordinate x, normalized with respect to the coherence length ξ of the superconductor, provided the de Gennes boundary condition df/dx=f/b is used. The closed-form solution expresses x as an elliptic integral of f, depending on the normalized parameters d and b. It is predicted theoretically that, for b<∞ and d≤dc=arctan(1/b), the proximity effect is so strong that the superconductivity is completely suppressed. In fact, in this case, the first Ginzburg-Landau equation possesses only the trivial solution f≡0. © 1993 Plenum Publishing Corporation.