About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physica D: Nonlinear Phenomena
Paper
On the numerical solution of the biharmonic equation in the plane
Abstract
The biharmonic equation arises in a variety of problems in applied mathematics, most notably in plane elasticity and in viscous incompressible flow. Integral equation methods are natural candidates for the numerical solution of such problems, since they discritize the boundary alone, are easy to apply in the case of free or moving boundaries, and achieve superalgebraic convergence rates on sufficiently smooth domains, regardless of shape. In this paper, we follow the work of Mayo and Greenbaum and make use of the Sherman-Lauricella integral equation which is a Fredholm equation with bounded kernel. We describe a fast algorithm for the evaluation of the integral operators appearing in that equation. When combined with a conjugate gradient like algorithm, we are able to solve the discretized integral equation in an amount of time proportional to N, where N is the number of nodes in the discretization of the boundary. © 1992.