About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Magnetics
Paper
On the information-theoretic capacity of magnetic recording systems in the presence of medium noise
Abstract
The compound behavior of the magnetic recording channel is modeled by combining the Lorentzian read-back pulse, the microtrack channel model, and additive white Gaussian noise (AWGN). By noting that at the output of this model the read-back signal is cyclostationary, the average autocorrelation function and corresponding power spectral density over one period are computed. The average power spectral density is then used to characterize the capacity of the magnetic recording channel for various linear density and medium noise scenarios by using the conjectured Shamai-Laroia lower bound. It is shown that from a capacity point of view, medium noise is better in certain cases than AWGN.