About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
On the current-voltage characteristics of epitaxial Schottky barrier diodes
Abstract
The J-V characteristics of epitaxial Schottky barrier diodes are analyzed. Based on the assumption of negligible recombination in the epitaxial layer, formal solution from which the J-V characteristics can be calculated is derived. The solution is valid for all injection levels and reduces to the form I = Is[exp (q(V-IR)/kT) - 1], where R is the series resistance of the epitaxial layer, under C12 C12V low-injection conditions. The analysis is justified by very close correspondence with exact numerical calculations using the Finite Element Device Analysis Program (FIELDAY) in which thermionic emission boundary conditions are implemented for both electrons and holes. It is shown that for low barrier Schottky diodes the minority carrier injection is negligible and the expression I = Is[exp (q(V-IR)/kT) - 1] describes the I-V characteristics over large bias range. For high barrier C12 C12 V Schottky diodes the exact solution must be used as minority carriers are injected and the series resistance is decreased due to conductivity modulation effect. © 1984.