Ilan Adler, Alan J. Hoffman, et al.
Discrete Applied Mathematics
This paper exploits and extends results of Edmonds, Cunningham, Cruse and McDiarmid on matroid intersections. Let r 1 and r 2 be rank functions of two matroids defined on the same set E. For every S ⊂E, let r 12(S) be the largest cardinality of a subset of S independent in both matroids, 0≦k≦r 12(E)-1. It is shown that, if c is nonnegative and integral, there is a y: 2 E →Z + which maximizes {Mathematical expression} and {Mathematical expression}, subject to y≧0, ∀j∈E, {Mathematical expression}. © 1981 Akadémiai Kiadó.
Ilan Adler, Alan J. Hoffman, et al.
Discrete Applied Mathematics
Wolfgang W. Bein, Peter Brucker, et al.
Mathematical Programming
Alan J. Hoffman
Mathematical Programming
Ulrich Faigle, Alan J. Hoffman, et al.
SIAM Journal on Discrete Mathematics