About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2017
Conference paper
On classification of environmental acoustic data using crowds
Abstract
In this work, we use crowds for acoustic classification of animal species in supervised and unsupervised manners. We demonstrate the effectiveness of the proposed triplet based crowdsourcing systems via actual experiments. Moreover, we propose a generalized 1-bit RPCA algorithm to further improve classification performance. The unique marriage of crowdsourcing and generalized 1-bit RPCA algorithm is shown to yield excellent performance for acoustic data classification.