About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Nonperturbative theory of exchange and correlation in one-electron quasiparticle states
Abstract
A nonperturbative argument is used to derive a one-electron Hamiltonian whose eigenfunctions are in one-to-one correspondence with electron or hole quasiparticles of an N-electron system. Nonlocal exchange is included exactly, and self-energy terms due to electronic correlation are included at the level of approximation of a given N-electron wave function. When parametrized by quasiparticle occupation numbers, this one-electron Hamiltonian is the functional derivative of an exact N-electron energy functional, as in the Landau theory of interacting fermion systems. The present nonperturbative derivation extends the Landau theory to ordered or localized systems for which many-body perturbation theory is not directly applicable. Analysis of the Bardeen-Cooper-Schrieffer (BCS) reduced Hamiltonian for superconductors leads to a temperature-dependent energy gap and a transition temperature in good agreement with the BCS theory, in a formalism that conserves the number of electrons. © 1986 The American Physical Society.