About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review Letters
Paper
Nonlinear screening in multilayer graphene systems
Abstract
Electrostatic screening in multilayer graphene is highly nonlinear due to the vanishing density of states at the Fermi level. Using a discrete model we study the charge screening normal to the layers. Our model shows a strong charge and temperature dependence and has a simple continuum limit at T=0 for undoped systems. Doped systems can exhibit more complex behavior due to minority-carrier screening. Most importantly we find that the screening length can vary more than an order of magnitude depending on the experimental conditions, reconciling the large range of screening lengths reported in previous experiments. This has important consequences for technological applications of multilayer graphene used in electrodes or transistor channels. © 2011 American Physical Society.