About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
Nonlinear interpolative effect of feedback template for image processing by discrete-time cellular neural network
Abstract
Recently a discrete-time cellular neural network (DT-CNN) is applied to many image processing applications such as compression and reconstruction, recognition and so on. Conventional image processing techniques such as the discrete cosine transformation (DCT) and wavelet transforms work as a simple filter and do not mate good use of interpolative dynamics by the feedback A template, which is one of the significant characteristics of a cellular neural network (CNN). If CNN is applied to a filter by an only feedforward B template, one should make a model which consists of digital filters using high speed signal processing modules such as a high speed digital signal processor. This paper describes the nonlinear interpolative effect of the feedback A template, by showing the evaluation of image compression and reconstruction.