About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Applied Physics
Paper
Noise properties of ferromagnetic tunnel junctions
Abstract
We report measurements of voltage fluctuations in magnetic tunnel junctions which exhibit both high and low magnetoresistance (MR). The voltage noise power normalized to the square of the junction bias voltage was 10-14/Hz at a frequency of 1 Hz in a high MR junction. Low MR junctions had significantly higher noise power at 1 Hz and the origin of the noise was not magnetic. In these junctions, random telegraph noise was observed over a wide range of temperatures and junction biases. The results are consistent with a two-channel model of conduction, one of which is spin independent and gives rise to large noise. A noise measuring technique provides evidence for bias-dependent current-path rearrangements. The data support the existence of an inhomogeneous (filamentary-like) current-flow pattern across the tunnel junction associated with the spin-independent channel. © 1998 American Institute of Physics.