About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B - CMMP
Paper
Ni(111)|graphene|h-BN junctions as ideal spin injectors
Abstract
Deposition of graphene on top of hexagonal boron nitride (h-BN) was very recently demonstrated, while graphene is now routinely grown on Ni. Because the in-plane lattice constants of graphite, h-BN, graphitelike BC2N, and of the close-packed surfaces of Co, Ni, and Cu match almost perfectly, it should be possible to prepare ideal interfaces between these materials which are, respectively, a semimetal, an insulator, a semiconductor, and ferromagnetic and nonmagnetic metals. Using parameter-free energy minimization and electronic transport calculations, we show how h-BN can be combined with the perfect spin filtering property of Ni|graphite and Co|graphite interfaces to make perfect tunnel junctions or ideal spin injectors with any desired resistance-area product. © 2011 American Physical Society.