About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Appl Stochastic Models Bus Indus
Paper
NHPP models for categorized software defects
Abstract
We develop NHPP models to characterize categorized event data, with application to modelling the discovery process for categorized software defects. Conditioning on the total number of defects, multivariate models are proposed for modelling the defects by type. A latent vector autoregressive structure is used to characterize dependencies among the different types. We show how Bayesian inference can be achieved via MCMC procedures, with a posterior prediction-based L-measure used for model selection. The results are illustrated for defects of different types found during the System Test phase of a large operating system software development project. Copyright © 2005 John Wiley & Sons, Ltd.