About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IEEE Transactions on Knowledge and Data Engineering
Paper
New Algorithms for Parallelizing Relational Database Joins in the Presence of Data Skew
Abstract
Parallel processing is an attractive option for relational database systems. As in any parallel environment, however, load balancing is a critical issue which affects overall performance. Load balancing for one common database operation in particular, the join of two relations, can be severely hampered for conventional parallel algorithms, due to a natural phenomenon known as data skew. In a pair of recent papers we described two new join algorithms designed to address the data skew problem. In this paper we propose significant improvements to both algorithms, increasing their effectiveness while simultaneously decreasing their execution times. The paper then focuses on the comparative performance of the improved algorithms and their more conventional counterparts. The new algorithms outperform their more conventional counterparts in the presence of just about any skew at all, dramatically so in cases of high skew. © 1994 IEEE