About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Narrow optical linewidths and spin pumping on charge-tunable close-to-surface self-assembled quantum dots in an ultrathin diode
Abstract
We demonstrate full charge control, narrow optical linewidths, and optical spin pumping on single self-assembled InGaAs quantum dots embedded in a 162.5-nm-thin diode structure. The quantum dots are just 88nm from the top GaAs surface. We design and realize a p-i-n-i-n diode that allows single-electron charging of the quantum dots at close-to-zero applied bias. In operation, the current flow through the device is extremely small resulting in low noise. In resonance fluorescence, we measure optical linewidths below 2μeV, just a factor of 2 above the transform limit. Clear optical spin pumping is observed in a magnetic field of 0.5T in the Faraday geometry. We present this design as ideal for securing the advantages of self-assembled quantum dots - highly coherent single-photon generation, ultrafast optical spin manipulation - in the thin diodes required in quantum nanophotonics and nanophononics applications.