About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ASRU 2003
Conference paper
Name entity recognition using language models
Abstract
This paper presents a new statistic name entity recognition algorithm, which does not require the collection and manual annotation of domain-specific sentences to train the models. The models of the name entities are domain-independent and could be directly applied to other domains of applications. This technique can also be applied to iteratively decode a set of raw sentences, if available, and use the decoded output to improve the statistic models. Applied to the mutual fund trading application, this new technique achieves a performance comparable to that using the decision tree model, which is trained from an annotated corpus. Iterative decoding of a set of natural language utterances and training of the general language model decreases the sentence error rate by 11%.