About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
EMNLP 2020
Paper
Multilingual Argument Mining: Datasets and Analysis
Abstract
The growing interest in argument mining and computational argumentation brings with it a plethora of Natural Language Understanding (NLU) tasks and corresponding datasets. However, as with many other NLU tasks, the dominant language is English, with resources in other languages being few and far between. In this work, we explore the potential of transfer learning using the multilingual BERT model to address argument mining tasks in non-English languages, based on English datasets and the use of machine translation. We show that such methods are well suited for classifying the stance of arguments, but less so for assessing their quality, presumably because quality is harder to preserve under translation. In addition, focusing on the translate-train approach, we show how the choice of languages to translate into, and the relations among them, effect the accuracy of the resultant model. Finally, we provide a human-generated dataset in multiple languages with more than 10K collected arguments, as well as machine translation of the English datasets, to facilitate evaluation of transfer learning methods on argument mining tasks.