About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
K-CAP 2017
Conference paper
Multi-lingual concept extraction with linked data and human-in-the-loop
Abstract
Ontologies are dynamic artifacts that evolve both in structure and content. Keeping them up-to-date is a very expensive and critical operation for any application relying on semantic Web technologies. In this paper we focus on evolving the content of an ontology by extracting relevant instances of ontological concepts from text. We propose a novel technique which is (i) completely language independent, (ii) combines statistical methods with human-in-theloop and (iii) exploits Linked Data as bootstrapping source. Our experiments on a publicly available medical corpus and on a Twitter dataset show that the proposed solution achieves comparable performances regardless of language, domain and style of text. Given that the method relies on a human-in-the-loop, our results can be safely fed directly back into Linked Data resources.