About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Paper
MOSFET's with Polysilicon Gates Self-Aligned to the Field Isolation and to the Source and Drain Regions
Abstract
The fabrication procedure and device characteristics of MOSFET's having a unique gate electrode structure are described. The polysilicon gate electrode of the structure is self-aligned on its ends with respect to the conductive source and drain regions, and is also self-aligned on its sides with respect to the nonconductive field oxide isolation regions. This double self-alignment feature results in a polysilicon gate electrode area that matches the channel region of the Fet. An-other novel feature of this “recessed-gate” device is a self-registering electrical connection between the gate and the metallic interconnection pattern. Compared to MOSFET's fabricated using more conventional methods, smaller FET's with increased packing density result from this misregistration-tolerant contacting technique and the doubly self-aligned gate electrode structure. The new FET structure may be ap-plied to various integrated circuits such as ROM’s, PLA’s, and dynamic RAM's. The use of a second layer of polysilicon and The addition of a fifth masking operation yields a dynamic RAM cell of small area with a diffused storage region. Copyright © 1979 by The Institute of Electrical and Electronics Engineers, Inc.