About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
NAACL-HLT 2004
Conference paper
Morphological analysis for statistical machine translation
Abstract
We present a novel morphological analysis technique which induces a morphological and syntactic symmetry between two languages with highly asymmetrical morphological structures to improve statistical machine translation qualities. The technique pre-supposes fine-grained segmentation of a word in the morphologically rich language into the sequence of prefix(es)-stem-suffix(es) and part-of-speech tagging of the parallel corpus. The algorithm identifies morphemes to be merged or deleted in the morphologically rich language to induce the desired morphological and syntactic symmetry. The technique improves Arabic-to-English translation qualities significantly when applied to IBM Model 1 and Phrase Translation Models trained on the training corpus size ranging from 3,500 to 3.3 million sentence pairs.