About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Journal of Chemical Physics
Paper
Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers
Abstract
We report a 14 ns microcanonical (NVE) molecular dynamics simulation of a fully hydrated bilayer of 1-stearoyl-2-oleoyl-phosphatidyethanolamine. This study describes the structure of the bilayer in terms of NMR order parameters and radial distribution functions, and compares them to experimental results and simulations of other lipids. A focus of this work is the characterization of the lipid-water interface, particularly the hydrogen bonding network of the phosphatidylethanolamine (PE) headgroups. We find that hydrogen bonding between the primary amine and phosphate groups has a pronounced effect on the structure of PE relative to phosphatidylcholine, and is evident in, for example, the P-N radial distribution functions. © 2005 American Institute of Physics.