About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
New Journal of Physics
Paper
Modified Grover operator for quantum amplitude estimation
Abstract
In this paper, we propose a quantum amplitude estimation method that uses a modified Grover operator and quadratically improves the estimation accuracy in the ideal case, as in the conventional one using the standard Grover operator. Under the depolarizing noise, the proposed method can outperform the conventional one in the sense that it can in principle achieve the ultimate estimation accuracy characterized by the quantum Fisher information in the limit of a large number of qubits, while the conventional one cannot achieve the same value of ultimate accuracy. In general this superiority requires a sophisticated adaptive measurement, but we numerically demonstrate that the proposed method can outperform the conventional one and approach to the ultimate accuracy, even with a simple non-adaptive measurement strategy.