About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
IHC 2017
Conference paper
Modeling task deviations as eccentricity distribution peaks
Abstract
Detailed usage data is becoming available through different devices (e.g., personal computer, cell phones, tablets, watches, glasses, wrist bands), in huge volumes, and in a speed that requires new models and visualizations to support the understanding of detailed user actions at scale. Without appropriate methods that summarize or provide means of analyzing large usage data sets, a semantic gap between the event-by-event data and the tasks profile remains. In this context, this work proposes a technique to support the analysis of task deviation from the examination of detailed user interface events streams. From the analysis of 427 event-by-event logged sessions (captured under user consent) of a technical reference website, this work presents how to identify task deviations by using eccentricity distribution. The proposed technique is a promising way of identifying task deviations in large log data sets containing information about how users performed real tasks.