About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
Physical Review B
Paper
Model for the generation of positive charge at the Si-SiO2 interface based on hot-hole injection from the anode
Abstract
A comprehensive model for the generation of positive charge and fast interface states in metal-oxide-semiconductor structures during electron injection is quantitatively analyzed. According to this model, the injected electrons are accelerated in the SiO2 conduction band by the external electric field. Once they reach the anode-SiO2 interface, a significant fraction of them lose their kinetic energy by exciting surface plasma oscillations. The decay of these collective excitations into hot-electron-hole pairs results in the injection of holes into the oxide and their trapping at the Si-SiO2 interface. The theoretical predictions agree with the experimental dependence of the phenomenon on anode field, temperature, gate material, and oxide thickness. © 1985 The American Physical Society.