About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICASSP 2012
Conference paper
Model dimensionality selection in bilinear transformation for feature space MLLR rapid speaker adaptation
Abstract
Bilinear models based feature space Maximum Likelihood Linear Regression (FMLLR) speaker adaptation have showed good performance especially when the amount of adaptation data is limited. However, the model dimensionality selection is very critical to the performance of bilinear models and need more work to find the optimal selection method. In this paper, we present an empirical study on this issue and suggest using a piecewise log-linear function to describe the relationship between the relatively optimal dimensionality parameter and the variant amount of data. This relationship can be used to efficiently select the bilinear model dimensionality in FMLLR speaker adaptation with the variant amount of data for each test speaker to improve recognition performance on the English voice control dataset. © 2012 IEEE.