About cookies on this site Our websites require some cookies to function properly (required). In addition, other cookies may be used with your consent to analyze site usage, improve the user experience and for advertising. For more information, please review your options. By visiting our website, you agree to our processing of information as described in IBM’sprivacy statement. To provide a smooth navigation, your cookie preferences will be shared across the IBM web domains listed here.
Publication
ICDE 1995
Conference paper
Mining sequential patterns
Abstract
We are given a large database of customer transactions, where each transaction consists of customer-id, transaction time, and the items bought in the transaction. We introduce the problem of mining sequential patterns over such databases. We present three algorithms to solve this problem, and empirically evaluate their performance using synthetic data. Two of the proposed algorithms, AprioriSome and AprioriAll, have comparable performance, albeit AprioriSome performs a little better when the minimum number of customers that must support a sequential pattern is low. Scale-up experiments show that both AprioriSome and AprioriAll scale linearly with the number of customer transactions. They also have excellent scale-up properties with respect to the number of transactions per customer and the number of items in a transaction.